473 research outputs found

    Multi-compartment microscopic diffusion imaging

    Get PDF
    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times. To demonstrate the developed method, we use high-quality diffusion data acquired with a bespoke scanner system from the Human Connectome Project. This study establishes the normative values of the new biomarkers for a large cohort of healthy young adults, which may then support clinical diagnostics in patients. Moreover, we show that the microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder which impacts brain microstructure and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay

    Experimental studies of g-ratio MRI in ex vivo mouse brain

    Get PDF
    This study aimed to experimentally evaluate a previously proposed MRI method for mapping axonal g-ratio (ratio of axon diameters, measured to the inner and outer boundary of myelin). MRI and electron microscopy were used to study excised and fixed brains of control mice and three mouse models of abnormal white matter. The results showed that g-ratio measured with MRI correlated with histological measures of myelinated axon g-ratio, but with a bias that is likely due to the presence of non-myelinated axons. The results also pointed to cases where the MRI g-ratio model simplifies to be primarily a function of total myelin content

    Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among Canadian preschool-aged children using compositional analyses

    Get PDF
    Abstract Background Sleep duration, sedentary behaviour, and physical activity are three co-dependent behaviours that fall on the movement/non-movement intensity continuum. Compositional data analyses provide an appropriate method for analyzing the association between co-dependent movement behaviour data and health indicators. The objectives of this study were to examine: (1) the combined associations of the composition of time spent in sleep, sedentary behaviour, light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA) with adiposity indicators; and (2) the association of the time spent in sleep, sedentary behaviour, LPA, or MVPA with adiposity indicators relative to the time spent in the other behaviours in a representative sample of Canadian preschool-aged children. Methods Participants were 552 children aged 3 to 4 years from cycles 2 and 3 of the Canadian Health Measures Survey. Sedentary time, LPA, and MVPA were measured with Actical accelerometers (Philips Respironics, Bend, OR USA), and sleep duration was parental reported. Adiposity indicators included waist circumference (WC) and body mass index (BMI) z-scores based on World Health Organization growth standards. Compositional data analyses were used to examine the cross-sectional associations. Results The composition of movement behaviours was significantly associated with BMI z-scores (p = 0.006) but not with WC (p = 0.718). Further, the time spent in sleep (BMI z-score: γ sleep  = −0.72; p = 0.138; WC: γ sleep  = −1.95; p = 0.285), sedentary behaviour (BMI z-score: γ SB  = 0.19; p = 0.624; WC: γ SB  = 0.87; p = 0.614), LPA (BMI z-score: γ LPA  = 0.62; p = 0.213, WC: γ LPA  = 0.23; p = 0.902), or MVPA (BMI z-score: γ MVPA  = −0.09; p = 0.733, WC: γ MVPA  = 0.08; p = 0.288) relative to the other behaviours was not significantly associated with the adiposity indicators. Conclusions This study is the first to use compositional analyses when examining associations of co-dependent sleep duration, sedentary time, and physical activity behaviours with adiposity indicators in preschool-aged children. The overall composition of movement behaviours appears important for healthy BMI z-scores in preschool-aged children. Future research is needed to determine the optimal movement behaviour composition that should be promoted in this age group

    Uptake and effectiveness of the Children's Fitness Tax Credit in Canada: the rich get richer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Government of Canada implemented a Children's Fitness Tax Credit (CFTC) in 2007 which allows a non-refundable tax credit of up to $500 to register a child in an eligible physical activity (PA) program. The purposes of this study were to assess whether the awareness, uptake, and perceived effectiveness of this tax credit varied by household income among Canadian parents.</p> <p>Methods</p> <p>An internet-based panel survey was conducted in March 2009 with a representative sample of 2135 Canadians. Of those, parents with children aged 2 to 18 years of age (<it>n </it>= 1004) were asked if their child was involved in organized PA programs (including dance and sports), the associated costs to register their child in these programs, awareness of the CFTC, if they had claimed the CFTC for the tax year 2007, and whether they planned to claim it in the upcoming year. Parents were also asked if they believed the CFTC has lead to their child being more involved in PA programs.</p> <p>Results</p> <p>Among parents, 54.4% stated their child was in organized PA and 55.5% were aware of the CFTC. Parents in the lowest income quartile were significantly less aware and less likely to claim the CFTC than other income groups. Among parents who had claimed the CFTC, few (15.6%) believed it had increased their child's participation in PA programs.</p> <p>Conclusions</p> <p>More than half of Canadian parents with children have claimed the CFTC. However, the tax credit appears to benefit the wealthier families in Canada.</p

    Effects of reallocating time in different activity intensities on health and fitness: a cross sectional study

    Get PDF
    BACKGROUND: The effects of replacing time in specific activity categories for other categories (e.g. replacing sedentary time with light activity) on health and fitness are not well known. This study used isotemporal substitution to investigate the effects of substituting activity categories in an equal time exchange fashion on health and fitness in young people. METHODS: Participants were drawn from schools in Camden, London (n = 353, mean age 9.3 ± 2.3 years). Time sedentary, in light and in moderate-to-vigorous activity (MVPA) was measured via accelerometry. The effects of substituting time in activity categories (sedentary, light and MVPA) with equivalent time in another category on health and fitness were examined using isotemporal substitution. RESULTS: In single and partition models, MVPA was favourably associated with body fat %, horizontal jump distance and flexibility. Time sedentary and in light activity were not associated with health and fitness outcomes in these models. In substitution models, replacing one hour of sedentary time with MVPA was favourably associated with body fat % (B = -4.187; 95% confidence interval (CI), -7.233, -1.142), horizontal jump distance (B = 16.093; 95% CI, 7.476, 24.710) and flexibility (B = 4.783; 95% CI, 1.910, 7.656). Replacing time in light activity with MVPA induced similar benefits but there were null effects for replacing sedentary with light intensity. CONCLUSION: Substituting time sedentary and in light activity with MVPA was associated with favourable health and fitness. Time in sedentary behaviour may only be detrimental to health and fitness when it replaces time in MVPA in young people

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Light-intensity physical activity and cardiometabolic biomarkers in US adolescents

    Get PDF
    BackgroundThe minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high) physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample.MethodsThe study is based on 1,731 adolescents, aged 12&ndash;19 years from the 2003/04 and 2005/06 National Health and Nutrition Examination Survey. Low light-intensity activity (100&ndash;799 counts/min), high light-intensity activity (800 counts/min to &lt;4 METs) and moderate- to vigorous-intensity activity (&ge;4 METs, Freedson age-specific equation) were accelerometer-derived. Cardiometabolic biomarkers, including waist circumference, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, and C-reactive protein were measured. Triglycerides, LDL- cholesterol, insulin, glucose, and homeostatic model assessments of &beta;-cell function (HOMA-%B) and insulin sensitivity (HOMA-%S) were also measured in a fasting sub-sample (n=807).ResultsAdjusted for confounders, each additional hour/day of low light-intensity activity was associated with 0.59 (95% CI: 1.18&ndash;0.01) mmHG lower diastolic blood pressure. Each additional hour/day of high light-intensity activity was associated with 1.67 (2.94&ndash;0.39) mmHG lower diastolic blood pressure and 0.04 (0.001&ndash;0.07) mmol/L higher HDL-cholesterol. Each additional hour/day of moderate- to vigorous-intensity activity was associated with 3.54 (5.73&ndash;1.35) mmHG lower systolic blood pressure, 5.49 (1.11&ndash;9.77)% lower waist circumference, 25.87 (6.08&ndash;49.34)% lower insulin, and 16.18 (4.92&ndash;28.53)% higher HOMA-%S.ConclusionsTime spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to vigorous-intensity activity had favorable associations with many cardiometabolic biomarkers. While increasing MVPA should still be a public health priority, further studies are needed to identify dose-response relationships for light-intensity activity thresholds to inform future recommendations and interventions for adolescents.</div

    Quantitative Analysis of Peripheral Tissue Perfusion Using Spatiotemporal Molecular Dynamics

    Get PDF
    Background: Accurate measurement of peripheral tissue perfusion is challenging but necessary to diagnose peripheral vascular insufficiency. Because near infrared (NIR) radiation can penetrate relatively deep into tissue, significant attention has been given to intravital NIR fluorescence imaging. Methodology/Principal Findings: We developed a new optical imaging-based strategy for quantitative measurement of peripheral tissue perfusion by time-series analysis of local pharmacokinetics of the NIR fluorophore, indocyanine green (ICG). Time-series NIR fluorescence images were obtained after injecting ICG intravenously in a murine hindlimb ischemia model. Mathematical modeling and computational simulations were used for translating time-series ICG images into quantitative pixel perfusion rates and a perfusion map. We could successfully predict the prognosis of ischemic hindlimbs based on the perfusion profiles obtained immediately after surgery, which were dependent on the preexisting collaterals. This method also reflected increases in perfusion and improvements in prognosis of ischemic hindlimbs induced by treatment with vascular endothelial growth factor and COMP-angiopoietin-1. Conclusions/Significance: We propose that this novel NIR-imaging-based strategy is a powerful tool for biomedical studies related to the evaluation of therapeutic interventions directed at stimulating angiogenesis
    corecore